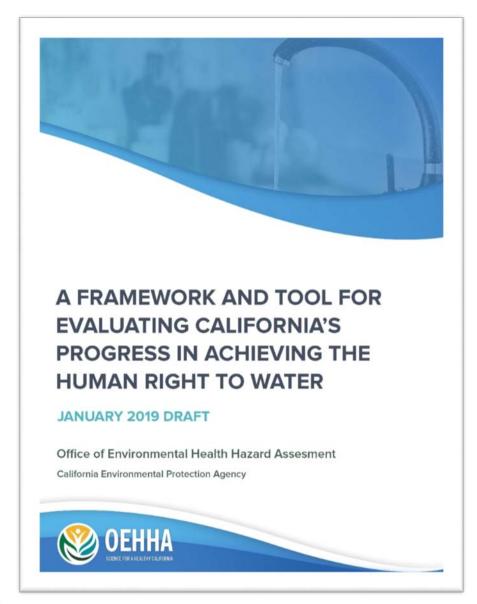
A Framework and Tool for Evaluating California's Progress in Achieving the Human Right to Water

John B Faust, PhD
Office of Environmental Health Hazard Assessment

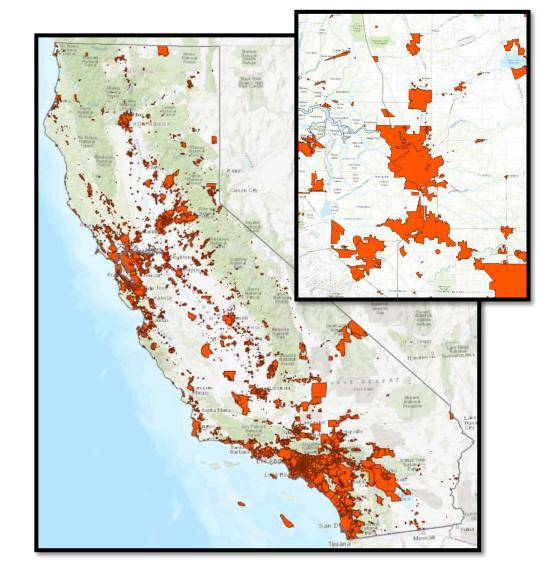

May 23, 2019

2019 CWA Spring Conference

The framework and tool:

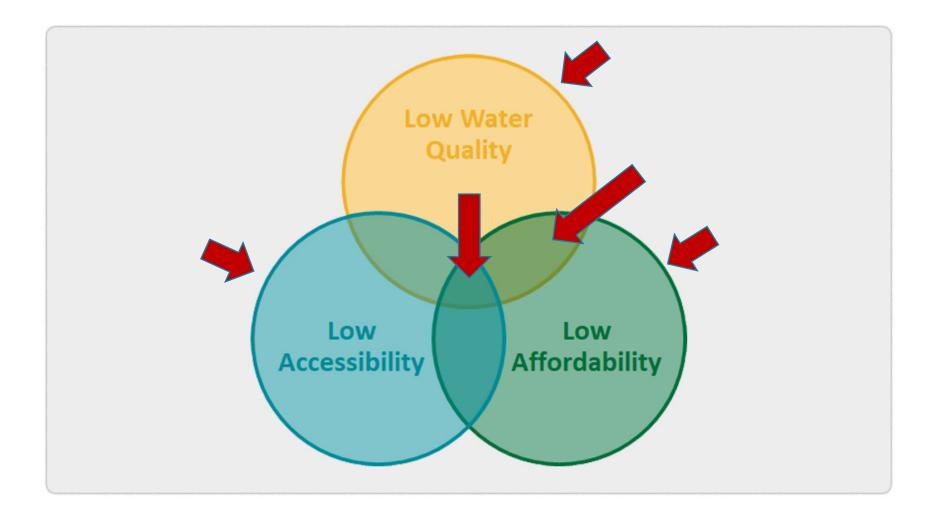
- Monitors progress in achieving the human right to water
- Represents first state-led effort to holistically assess the quality, accessibility and affordability of drinking water

Framework Overview


Water
Adequacy

Water
Water
Quality

Accessibility


Water
Affordability

- 13 indicators: relevance, data quality, coverage, and public availability
- Unit of analysis:
 Community Water System
- *Time period*: 2008-2016
- Statewide application

A Holistic View of Water System Challenges

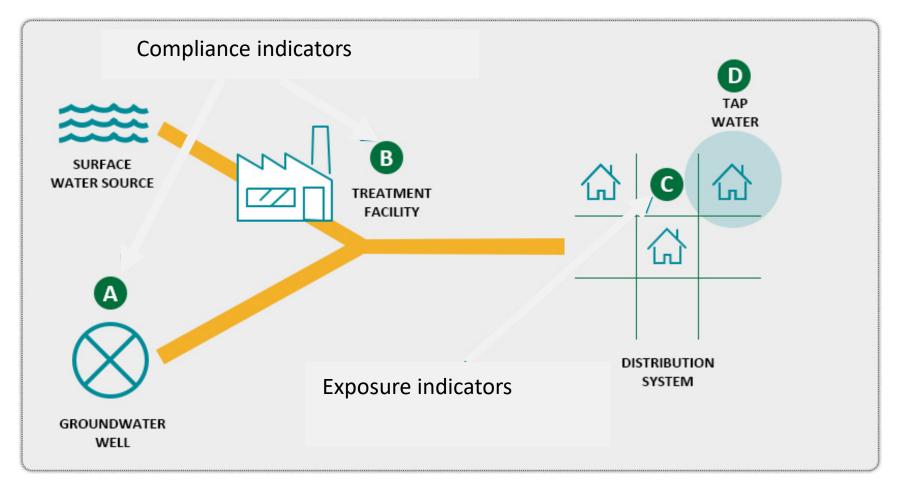
Water Quality: Indicators rely on data for 19 contaminants

Criteria for contaminant selection:

- Significant coverage of water quality data:
 - ≥80% of systems report at least one sample

Or

High priority:


Significant number of MCL violations

	Measure Used in Water Quality Indicators				
Contaminant	Exposure	Compliance			
Arsenic	Yes	Yes			
Barium	Yes	Yes			
Benzene	Yes	Yes			
Cadmium	Yes	Yes			
Carbon tetrachloride	Yes	Yes			
Dibromochloropropane (DBCP)	Yes	Yes			
Lead [†]	Yes	No			
Mercury	Yes	Yes			
Methyl tertiary butyl ether (MTBE)	Yes	Yes			
Nitrate	Yes	Yes			
Perchloroethylene (PCE)	Yes	Yes			
Perchlorate	Yes	Yes			
Trichloroethylene (TCE)	Yes	Yes			
1,2,3-Trichloropropane (1,2,3-TCP) †	Yes	No			
Toluene	Yes	Yes			
Total Coliform [†]	Yes	Yes			
Total Trihalomethanes (TTHM)	Yes	Yes			
Uranium	Yes	Yes			
Xylene	Yes	Yes			



Two Types of Water Quality Indicators: Compliance vs Exposure

Water Quality:

Four exposure indicators

Annual average contaminant concentration in delivered water

Potential high exposure

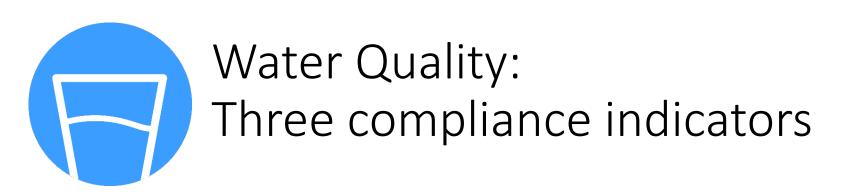
How many contaminants' annual average concentration exceeded the MCL?

Presence of acute contaminants

Are the above contaminants associated with health effects from short term exposure? (nitrate, perchlorate, fecal/E. coli)

Maximum duration of potential high exposure

How long did exposure last?



Data availability

Was water quality data available?

Data source: Water Quality Monitoring database

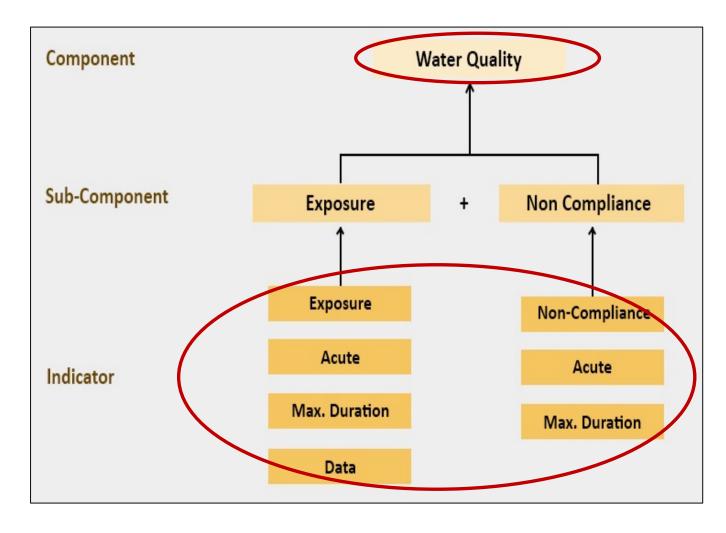
Count of MCL Violations

Non-compliance with primary drinking standards

How many contaminants received at least one MCL violation in study period?

Presence of acute contaminants

Are the above contaminants associated with health effects from short term exposure? (nitrate, perchlorate, fecal/E. coli)


Maximum duration of non-compliance

How long did non-compliance last?

Composite View of Water Quality

- Individual indicators highlight specific outcomes
- Composite component score highlights outcomes across multiple indicators

Water Quality: Hypothetical example

Exposure

Potential high exposure

Result: Arsenic

Presence of acute contaminants

Result: No

Maximum duration of potential high exposure

Result: 9 years of arsenic at

20-30 ppb

Data availability

Result: All required data

reported

Compliance

Non-compliance with primary drinking standards

Result: Arsenic

Presence of acute contaminants

Result: No

Maximum duration of noncompliance

Result: 5 years of MCL violations

Water Accessibility

Entails:

- Physical quantity
- Availability and reliability of supply (sufficient and continuous)
- Source type and collection time

System-related characteristics that can impede access

Physical vulnerability:

Factors that may interfere with the availability and reliability of an adequate supply

Institutional vulnerability:

 Technical, managerial and financial capacity of a water system to conduct operations and maintenance

Water Accessibility: Three indicators

Physical Vulnerability

Physical vulnerability to water outages

What is the source type and how many sources?

Data sources: SDWIS and U.S. census data

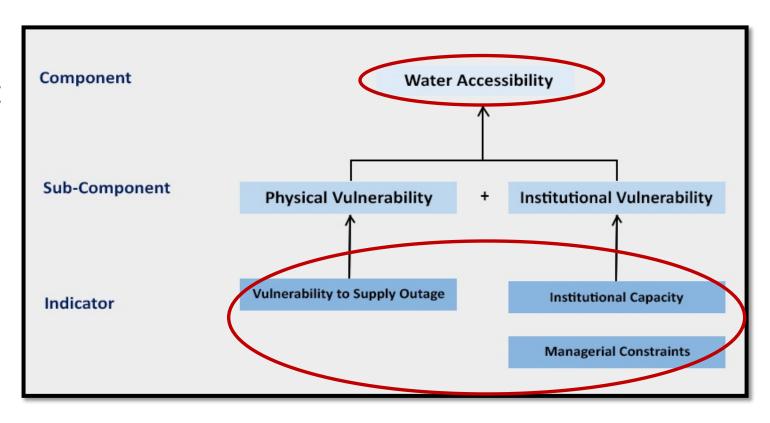
Future steps: Additional indicators to address other aspects of accessibility

Institutional Vulnerability

Institutional capacity

What is the size and disadvantaged community (DAC) status?

Managerial constraints


How many monitoring and reporting violations?

Composite View of Water Accessibility

- Individual indicators highlight specific outcomes
- Composite component score highlights outcomes across multiple indicators

Water Accessibility: Hypothetical example

Physical Vulnerability

Physical vulnerability to water outages

Result: 1 groundwater well

Institutional Vulnerability

Institutional capacity

Result: 50 connections

Median Household Income:

\$42,271 (DAC)

Managerial constraints

Result: 10 Monitoring &

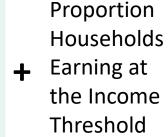
Reporting Violations

Water Affordability: Three indicators

Proposed Affordability Ratio =

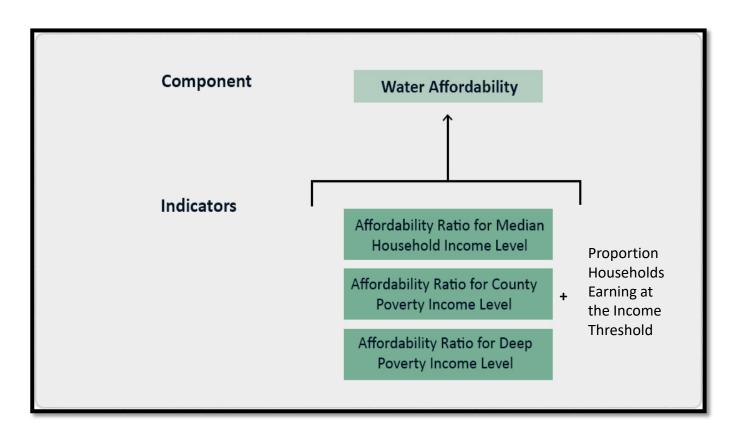
 $\frac{\text{Monthly Water Bill @ 6 Hundred Cubic Feet}}{\text{Income of Water System}} \ge \frac{\text{Multiple}}{\text{ratios}}$

Data sources: electronic Annual Report, census data, poverty threshold calculations from Public Policy Institute of California


Gaps: Additional effort needed to fill in water cost data gaps

Affordability Ratio at the **Median Household Income**

Affordability Ratio at the **County Poverty Threshold**


Affordability Ratio at the **Deep Poverty Threshold**

Composite View of Water Affordability

- Individual indicator scores provide affordability information for specific income levels
- Composite score provides overall affordability burden:
 - Factors in economic vulnerability and proportion of households facing different burdens

Water Affordability: Hypothetical example

Monthly Water Bill:	\$72
Median Household Income:	\$42,279
County Poverty :	\$25,717
Deep Poverty:	\$12,858

Affordability Ratio at the **Median Household Income**

Result: 2.1%

Affordability Ratio at the **County Poverty Threshold**

Result: 3.4%; 30% of households

Affordability Ratio at the **Deep Poverty Threshold**

Result: 6.8%; 5% of households

Framework and tool allow for an assessment of the status of water systems...

	Water Quality					Accessibility			Affordability				
Indicator	3	(0°.)			(X)	(0°.)							
	1	2	3	4	5	6	7	1	2	3	1	2	3
System A													
System B													
System C													

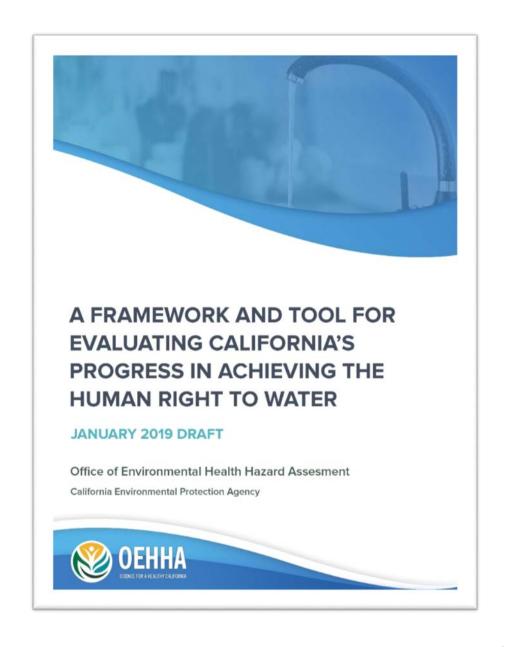
More concern

Less concern

Conclusion

The framework and tool:

- Summarize 3 components and 13 indicators
- Offers holistic view that can help show interrelationships
- Provides a view of big-picture trends across water systems and regions, statewide
- Helps capture how those trends might change over time



Next Steps

- Public comment closed
 February 4, 2019
- Public comments posted on OEHHA's website
- Next steps:
 - Ongoing OEHHA review of comments
 - Revisions to framework
 - Release of next draft document explaining the tool in detail

Contributors & Program Information

Staff lead	Carolina Balazs, PhD Research Scientist, OEHHA
Program webpage	https://oehha.ca.gov/water/report/human-right-water-california
Program email	HR2.Water@oehha.ca.gov

Authors	Reviewers	Technical Editor	CalEPA Reviewers
Carolina Balazs	Lauren Zeise	Krystyna von	Yana Garcia
John B Faust	Allan Hirsch	Henneberg	Arsenio Mataka
Jessica J Goddard			Gina Solomon
Komal Bangia			
Emilie Fons			
Molly Starke			22

